
 
 
Concentrations of atrazine and nitrate in shallow groundwaters are measured in wells over a 
several county area.  For each sample, the concentration of one is plotted versus the 
concentration of the other.  As atrazine concentrations increase, so do nitrate.  How might the 
strength of this association be measured and summarized? 
 
Streams draining the Sierra Nevada mountains in California usually receive less precipitation in 
November than in other months.  Has the amount of November precipitation significantly 
changed over the last 70 years, showing a gradual change in the climate of the area?  How might 
this be tested? 
 
The above situations require a measure of the strength of association between two continuous 
variables, such as between two chemical concentrations, or between amount of precipitation and 
time.  How do they co-vary?  One class of measures are called correlation coefficients, three of 
which are discussed in this chapter.  Also discussed is how the significance of that association 
can be tested for, to determine whether the observed pattern differs from what is expected due 
entirely to chance.  For measurements of correlation between grouped (non-continuous) 
variables, see Chapter 14. 
 
Whenever a correlation coefficient is calculated, the data should be plotted on a scatterplot.  No 
single numerical measure can substitute for the visual insight gained from a plot.  Many different 
patterns can produce the same correlation coefficient, and similar strengths of relationships can 
produce differing coefficients, depending on the curvature of the relationship.  In Chapter 2, 
figure 2.1 presented eight plots all with a linear correlation coefficient of 0.70.  Yet the data were 
radically different!  Never compute correlation coefficients and assume the data look like those 
in h of figure 2.1. 

Chapter 8
Correlation
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8.1  Characteristics of Correlation Coefficients 

Correlation coefficients measure of the strength of association between two continuous 
variables.  Of interest is whether one variable generally increases as the second increases, 
whether it decreases as the second increases, or whether their patterns of variation are totally 
unrelated.  Correlation measures observed co-variation.  It does not provide evidence for causal 
relationship between the two variables.  One may cause the other, as precipitation causes runoff.  
They may also be correlated because both share the same cause, such as two solutes measured at 
a variety of times or a variety of locations.  (Both are caused by variations in the source of the 
water).  Evidence for causation must come from outside the statistical analysis -- from the 
knowledge of the processes involved.   

Measures of correlation (here designated in general as ρ) have the characteristic of being 
dimensionless and scaled to lie in the range −1 ≤ ρ ≤ 1.  When there is no correlation between 
two variables, ρ = 0.  When one variable increases as the second increases, ρ is positive.  When 
they vary in opposite directions, ρ is negative.  The significance of the correlation is evaluated 
using a hypothesis test: 
 H0: ρ = 0  versus  H1: ρ ≠ 0.   
When one variable is a measure of time or location, correlation becomes a test for temporal or 
spatial trend. 
 
8.1.1   Monotonic Versus Linear Correlation 
Data may be correlated in either a linear or nonlinear fashion.  When y generally increases or 
decreases as x increases, the two variables are said to possess a monotonic correlation.  This 
correlation may be nonlinear, with exponential patterns, piecewise linear patterns, or patterns 
similar to power functions when both variables are non-negative.  Figure 8.1 illustrates a non-
linear monotonic association between two variables -- as x increases, y generally increases by an 
ever-increasing rate.  This nonlinearity is evidence that a measure of linear correlation would be 
inappropriate.  The strength of a linear measure will be diluted by nonlinearity, resulting in a 
lower correlation coefficient and less significance than a linear relationship having the same 
amount of scatter. 
 
Three measures of correlation are in common use -- Kendall's tau, Spearman's rho, and 
Pearson's r.  The first two are based on ranks, and measure all monotonic relationships such as 
that in figure 8.1.  They are also resistant to effects of outliers.  The more commonly-used 
Pearson's r is a measure of linear correlation (figure 8.2), one specific type of monotonic 
correlation.  None of the measures will detect nonmonotonic relationships, where the pattern 
doubles back on itself, like that in figure 8.3. 
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Figure 8.1   Monotonic (nonlinear) correlation between x and y. 
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Figure 8.2   Linear correlation between X and Y. 
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Figure 8.3   Non-monotonic relationship between X and Y. 
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8.2   Kendall's Tau 

Tau (Kendall, 1938 and Kendall, 1975) measures the strength of the monotonic relationship 
between x and y.  Tau is a rank-based procedure and is therefore resistant to the effect of a small 
number of unusual values.   It is well-suited for variables which exhibit skewness around the 
general relationship. 

Because tau (τ) depends only on the ranks of the data and not the values themselves, it can be 
implemented even in cases where some of the data are censored, such as concentrations known 
only as less than the reporting limit.  This is an important feature of the test for applications to 
water resources.  See Chapter 13 for more detail on analysis of censored data. 

Tau will generally be lower than values of the traditional correlation coefficient r for linear 
associations of the same strength (figure 8.2).  "Strong" linear correlations of 0.9 or above 
correspond to tau values of about 0.7 or above.  These lower values do not mean that tau is less 
sensitive than r, but simply that a different scale of correlation is being used.  Tau is easy to 
compute by hand, resistant to outliers, and measures all monotonic correlations (linear and 
nonlinear).  Its large sample approximation produces p-values very near exact values, even for 
small sample sizes.   As it is a rank correlation method, tau is invariant to monotonic power 
transformations of one or both variables.  For example, τ for the correlation of log(y) versus 
log(x) will be identical to that of y versus log(x), and of y versus x. 
 

8.2.1   Computation 
Tau is most easily computed by first ordering all data pairs by increasing x.  If a positive 
correlation exists, the y's will increase more often than decrease as x increases.  For a negative 
correlation, the y's will decrease more often than increase.  If no correlation exists, the y's will 
increase and decrease about the same number of times.   

A two-sided test for correlation will evaluate the following equivalent statements for the null 
hypothesis H0, as compared to the alternate hypothesis H1: 

 H0: a) no correlation exists between x and y (τ = 0), or  
  b) x and y are independent, or 
  c) the distribution of y does not depend on x, or 
  d) Prob (yi < yj  for i < j ) = 1/2. 

 H1: a) x and y are correlated (τ ≠ 0), or 
  b) x and y are dependent, or 
  c) the distribution of y (percentiles, etc.) depends on x, or 
  d) Prob (yi < yj  for i < j ) ≠ 1/2. 



Correlation 213 
 

The test statistic S measures the monotonic dependence of y on x.  Kendall's S is calculated by 
subtracting the number of "discordant pairs" M, the number of (x,y) pairs where y decreases as 
x increases, from the number of "concordant pairs" P, the number of (x,y) pairs where y 
increases with increasing x: 

 S = P – M   [8.1] 
 
where P =  "number of pluses", the number of times the y's increase as the x's increase,  

or the number of yi < yj for all i < j, 
 M =  "number of minuses," the number of times the y's decrease as the x's increase, or 

the number of yi > yj for i < j . 
for all i = 1,....(n − 1) and j = (i+1),.....n. 

Note that there are n(n−1)/2 possible comparisons to be made among the n data pairs.  If all y 
values increased along with the x values, S = n(n−1)/2.  In this situation, the correlation 
coefficient τ should equal +1.  When all y values decrease with increasing x, S = −n(n−1)/2 and 
τ should equal −1.  Therefore dividing S by n(n−1)/2 will give a value always falling between −1 
and +1.  This then is the definition of τ, measuring the strength of the monotonic association 
between two variables: 

Kendall’s tau correlation coefficient 

 τ =
S

n(n −1)/2
  [8.2] 

To test for significance of τ, S is compared to what would be expected when the null hypothesis 
is true.  If it is further from 0 than expected, H0 is rejected.  For n ≤ 10 an exact test should be 
computed.  The table of exact critical values is found in table B8 of the Appendix.   
 

8.2.2   Large Sample Approximation 
For n > 10 the test statistic can be modified to be closely approximated by a normal distribution.  
This large sample approximation ZS is the same form of approximation as used in Chapter 5 for 
the rank-sum test, where now  
 d = 2    (S can vary only in jumps of 2),  
 µS = 0,   and 
 σS =  (n/18)•(n-1)•(2n+5) .  
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The null hypothesis is rejected at significance level α if |ZS| > Zcrit where Zcrit is the value of 
the standard normal distribution with a probability of exceedance of α/2.  In the case where 
some of the x and/or y values are tied the formula for σS must be modified, as discussed in the 
next section.   

Example 1:    10 pairs of x  and y are given below, ordered by increasing x: 
 

 y  1.22 2.20 4.80 1.28 1.97 1.46 2.64 2.34 4.84 2.96 
 x  2 24 99 197 377 544 632 3452 6587 53,170 

 
Figure 8.4   Example 1 data showing one outlier present. 

 
To compute S,  first compare y1= 1.22 with all subsequent y's  ( y

j  , j>1). 
 2.20 > 1.22,   so score a + 
 4.80 > 1.22,       score a + 
 1.28 > 1.22,       score a + 
 1.97 > 1.22,       score a +   etc. 
All subsequent y's are larger, so there are 9 +'s for i=1. 
 
Move on to i=2, and compare y2 =2.20 to all subsequent y's.  
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 4.80 > 2.20,  so score a + 
 1.28 < 2.20,       score a − 
 1.97 < 2.20,       score a − 
 1.46 < 2.20,       score a −   etc. 
 
There are 5 +'s and 3 −'s for i=2.  Continue in this way, until the final comparison of yn−1 = 
4.84 to yn.  It is convenient to write all +'s and −'s below their respective y

i
, as below: 

 y
i
  1.22 2.20 4.80 1.28 1.97 1.46 2.64 2.34 4.84 2.96 

  + + − + − + − + − 
  + − − + + + + + 
  + − − + + + + 
  + − − + + + 
  + + − + + 
  + + + + 
  + + − 
  + + 
  + 
 
In total there are 33 +'s (P = 33) and 12 −'s (M = 12).  Therefore S = 33 − 12 = 21.   
There are 10•9/2 = 45 possible comparisons, so  τ = 21/45 = 0.47. 
Turning to table B8, for n=10 and S=21, the exact p-value is 2•0.036 = 0.072. 

The large sample approximation is   
 ZS = (21−1) /  (10/18)•(10-1)•(20+5)  
 = 20/(11.18) = 1.79.  
From a table of the normal distribution, the 1-sided quantile for 1.79 = 0.963 
so that  p ≅ 2 • (1−.963) = 0.074 
 

8.2.3   Correction for Ties 
To compute τ when ties are present, tied values of either x or y produce a 0 rather than + or − .  
Ties do not contribute to either P or M.  S and τ are computed exactly as before.  An adjustment 
is required for the large sample approximation ZS , however, by correcting the σS formula. 

In order to compute σS in the presence of ties, both the number of ties and the number of 
values involved in each tie must be counted.  Consider for example a water quality data set (in 
units of µg/L) of 17 values (n=17) shown here in ascending order. 

<1,  <1,  <1,  <1,  <1,  2,  2,  2,  3,  5,  5,  7,  9,  10,  10,  14,  18. 
 
There are a total of 4 tied groups in the data set.  The largest tied group in the data set is of 5 
values (tied at <1 µg/L), there are no tied groups of 4, there is 1 tied group of 3 (at 2 µg/L), and 
there are 2 tied groups of 2 (at 5 and 10 µg/L).  For completeness note that there are 5 "ties" of 
extent 1 (untied values at 3, 7, 9, 14, and 18 µg/L).   These appropriately never add to the 
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correction because (i−1) always equals zero.  Kendall (1975) defined the variable ti as the 
number of ties of extent i.  For this data set t5 = 1 (1 tie of extent 5), t4 = 0 (no ties of extent 4), 
t3 = 1 (1 tie of extent 3), t2 = 2 (2 ties of extent 2) and t1 = 5 (5 "ties" of extent 1).  For i>5, ti 
= 0.  Kendall's correction to σS in the presence of ties is:  

 σS =  

[n (n - 1) (2n + 5) -   ∑
i=1

n
 ti (i) (i - 1) (2i + 5) ] 

18   [8.4] 

 

So for the example water quality data: 

 σS = [17•16•39 - 5•1•0•7 - 2•2•1•9 - 1•3•2•11 - 1•5•4•15] / 18  

or σS = 567  = 23.81.  Notice that if the data set could have been measured with sufficient 
precision (including a lower detection limit) so that no ties existed, then  
σS = 589.333  = 24.28.  Thus the ties here represent a rather small loss of information. 

Example 2:    
The example 1 data are modified to include ties, as follows: 
 y  1.22 2.20 4.80 1.28 1.97 1.97 2.64 2.34 4.84 2.96 
 x  2 24 99 99 377 544 632 3452 6587 53,170 

Using a 0 to denote a tie, the comparisons used to compute P, M, and S are: 
  + + 0x + 0y + − + − 
  + − − + + + + + 
  + − − + + + + 
  + − − + + + 
  + + − + +    0x :  tie in x 
  + + + +     0y :  tie in y 
  + + − 
  + + 
  + 
In total there are 33 +'s (P=33) and 10 −'s (M=10).  Therefore S = 33−10 = 23, and  
τ =  23/45 = 0.51.  The exact two-sided p-value from table B8 is  2•0.023 = 0.046.  For the 
large sample approximation, there are 2 ties of extent 2, so that  
 σS = [10•9•25 - 2•2•1•9] / 18   =  123  = 11.09 
whereas without the tie σS was 11.18.  Computing Zs,  
 ZS = (23−1) / 123  
 = 22/(11.09) = 1.98.  
From a table of the normal distribution, the 1-sided quantile for 1.98 = 0.976 
so that  p ≅ 2 • (1−.976) = 0.048 . 
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8.3   Spearman's Rho 
 
Spearman's rho is an alternative rank correlation coefficient to Kendall's tau.  Kendall's tau is 
related to the sign test -- all positive differences between data pairs are assigned a +1 without 
regard to the magnitude of those differences.  With Spearman's rho, differences between data 
values ranked further apart are given more weight, similar to the signed-rank test.  Rho is 
perhaps easiest to understand as the linear correlation coefficient computed on the ranks of the 
data.  Thus rho can be computed as a rank transform method.  Rho and tau use different scales 
to measure the same correlation, much like Centigrade and Fahrenheit measures of temperature.   
Though tau is generally lower than rho in magnitude, their p-values for significance should be 
quite similar when computed on the same data.   
 
To compute rho, the data for the two variables are ranked independently among themselves. For 
the ranks of x (Rxi) and ranks of y (Ryi), rho can be computed from the equation: 

 rho = i=1

n

∑ Rx
i
Ry

i( )− n
n +1

2

 
  

 
  

2

n(n 2 −1)/12
 [8.5] 

where (n+1)/2 is the mean rank of both x and y.  Ties in x or y are assigned average ranks.  This 
equation can be derived from substituting Rxi and Ryi for xi and yi in equation 8.6 for Pearson's 
r, and simplifying.    If there is a positive correlation, the higher ranks of x will be paired with the 
higher ranks of y, and their product will be large.  For a negative correlation the higher ranks of 
x will be related to lower ranks of y, and their product will be small.  When there is no 
correlation, there will be nothing other than a random pattern in the association between x and y 
ranks, and their product will be similar to the product of their average rank, the second term in 
the numerator of equation 8.5.  Thus rho will be close to zero.  

Bhattacharyya and Johnson (1977) present the exact and large sample approximation versions of 
the hypothesis test for Spearman's rho.  However, it is easiest to rank the two variables and 
compute the hypothesis test for Pearson's r -- the rank transform method.  It is important to 
note that the large sample and rank approximations for rho do not fit the distribution of the test 
statistic well for small sample sizes (n<20), in contrast to Kendall's tau.  This is one reason tau is 
often preferred over rho. 
 
Example 1, continued 
For the example 1 data, the data ranks are  
 Ry  1 5 9 2 4 3 7 6 10 8 
 Rx  1 2 3 4 5 6 7 8 9 10 
 
Solving for rho, multiplying the ranks above gives,  
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 (Rxi • Ryi)  1    10    27     8     20     18     49     48     90     80,          Σ = 351 

 Rho  = 
351−10 (5.5)2

1099/12
= 

48.5
82.5   

 = 0.588,   exact p-value = 0.04 from table 13 of Bhattacharyya and Johnson (1977). 

The approximate significance test for Pearson's r on the data ranks (as described in the next 
section) has a p-value = 0.074, not too close to the exact value.  Whenever using Spearman's rho 
for sample sizes less than 20, exact p-values should be used. 

 
8.4   Pearson's r 
 
The most commonly-used measure of correlation is Pearson's r.  It is also called the linear 
correlation coefficient because r measures the linear association between two variables.  If the 
data lie exactly along a straight line with positive slope, then r = 1.  This assumption of linearity 
makes inspection of a plot even more important for r than for rho or tau because a non-
significant value of r may be due to curvature or outliers as well as to independence.  As in figure 
8.1, x and y may be strongly related in a nonlinear fashion, while the resulting r may be small and 
insignificantly different from zero. 
 
Pearson's r is not as resistant to outliers as was tau and rho because it is computed using non-
resistant measures -- means and standard deviations.  It assumes that the data follow a bivariate 
normal distribution.  With this distribution, not only do the individual variables x and y follow a 
normal distribution, but their joint variation also follows a specified pattern.  This assumption 
rules out the use of r when the data have increasing variance, as in figure 8.1.  Skewed variables 
often demonstrate outliers and increasing variance.  Thus r is often not useful for describing the 
correlation between untransformed hydrologic variables. 
 
Pearson's r is invariant to scale changes, as in converting streamflows in cubic feet per second 
into cubic meters per second, etc.  This dimensionless property is obtained by standardizing, 
dividing the distance from the mean by the sample standard deviation, as shown in the formula 
for r, below. 

 r = 
1

n −1 i=1

n

∑ x
i
−x 

s
x

 

 
 
 

 

 
 
 

y
i
− y 

s
y

 

 
 
 

 

 
 
  [8.6] 

The significance of r can be tested by determining whether r differs from zero.  The test statistic 
tr is computed by equation 8.7, and compared to a table of the t distribution with n−2 degrees of 
freedom. 

 tr = 
r n − 2

1− r 2
 [8.7] 
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Example 1, continued 
For the example 1 data, means and standard deviations are: 
  x   y  
 mean 6508.6 2.57 
 s  16531.6 1.31 
 

Then  r =  
1

9 i=1

9

∑ x
i
−6508.6

16531.6

 

 
  

 

 
   

y
i
− 2.57

1.31

 

 
  

 

 
    =  0.174 

 
To test for whether r is significantly different from zero, and therefore y is linearly dependent on 
x,   

 tr = 
0.174 8

1− (0.174)2
=  0.508,  

with a p-value of 0.63 from a table of the t-distribution.  Therefore H0: r=0 is not rejected, and y 
is not linearly dependent (or related) to x as measured by r.  This differs from the results using 
rho and tau, whose p-values of 0.04 and 0.07 respectively did indicate an association between y 
and x.  Figure 8.4 provides an intuitive explanation of why r differs from rho and tau -- r is 
strongly affected by the one outlying observation, even though the overall trend is a linear one. 
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Exercises 
 
8.1 Are uranium concentrations correlated with total dissolved solids in the following 

groundwater samples?  If so, describe the strength of the relationship. 

 Uranium conc. TDS,  Uranium conc. TDS,  
   in ppb  in mg/L   in ppb  in mg/L 
 682.65 0.9315 1240.81 6.8559 
 819.12 1.9380 538.35 0.4806 
 303.76 0.2919 607.75 1.1452 
 1151.40 11.9042 705.89 6.0876 
 582.42 1.5674 1290.57 10.8823 
 1043.39 2.0623 526.09 0.1473 
 634.84 3.8858 784.68 2.6741 
 1087.25 0.9772 953.14 3.0918 
 1123.51 1.9354 1149.31 0.7592 
 688.09 0.4367 1074.22 3.7101 
 1174.54 10.1142 1116.59 7.2446 
 599.50 0.7551 

 
8.2 Compute the other two correlation coefficients not chosen in Exercise 8.1.  Are all 

coefficients equally appropriate? 
 
8.3 For the data on Corbicula densities in the Tennesse River found in Appendix C8, 

compute Kendall's tau for all pairs of data in the same strata and season, but one year 
apart.  Is this correlation significant?  How should this result be interpreted? 




